Math 217.003 F25 Quiz 12 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) Suppose V and W are vector spaces. A linear transformation $T: V \to W$ is ...

Solution: A function $T: V \to W$ such that for all $u, v \in V$ and all scalars α, β (in the underlying field \mathbb{F} (e.g. $\mathbb{F} = \mathbb{R}$ the set of real numbers)),

$$T(\alpha u + \beta v) = \alpha T(u) + \beta T(v).$$

Equivalently, T(u+v) = T(u) + T(v) and $T(\alpha v) = \alpha T(v)$ for all $u, v \in V$, $\alpha \in \mathbb{F}$.

(b) To say that a list of vectors (x_1, x_2, \ldots, x_d) in a vector space X is linearly independent means ...

Solution: That the only scalars $a_1, \ldots, a_d \in \mathbb{F}$ satisfying

$$a_1x_1 + \dots + a_dx_d = 0_X$$

are $a_1 = \cdots = a_d = 0$. Equivalently, no x_j can be written as a linear combination of the others.

(c) Suppose U is a vector space and $u_1, \ldots, u_n \in U$. The list (u_1, \ldots, u_n) is a basis for U provided that ...

Solution: (i) it is linearly independent, and (ii) it spans U, i.e.

$$U = \operatorname{span}\{u_1, \dots, u_n\} = \Big\{ \sum_{i=1}^n \alpha_i u_i : \ \alpha_i \in \mathbb{F} \Big\}.$$

Equivalently: every $u \in U$ can be written uniquely as $u = \sum_{i=1}^{n} \alpha_i u_i$.

- 2. Let A be a $d \times n$ matrix with columns $\vec{C}_1, \dots, \vec{C}_n$. Prove that the following are equivalent:
 - (i) $[a_1 \ a_2 \ \dots \ a_n]^{\top}$ is a solution to $A\vec{x} = 0$.
 - (ii) $[a_1 \ a_2 \ \dots \ a_n]^{\top}$ is in the kernel of the transformation $T_A : \mathbb{F}^n \to \mathbb{F}^d$ given by $T_A(\vec{x}) = A\vec{x}$.
 - (iii) $a_1\vec{C}_1 + a_2\vec{C}_2 + \cdots + a_n\vec{C}_n = 0$ is a (nontrivial) linear relation among the columns.

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

Solution: (i) \Leftrightarrow (ii): By definition, $\ker(T_A) = \{\vec{x} \in \mathbb{F}^n : T_A(\vec{x}) = A\vec{x} = 0\}$. Thus $[a_1 \ldots a_n]^{\top} \in \ker(T_A)$ if and only if it solves $A\vec{x} = 0$.

(i) \Leftrightarrow (iii): Write $A = [\vec{C}_1 \ \vec{C}_2 \ \dots \ \vec{C}_n]$. For any $\vec{x} = [x_1 \ \dots \ x_n]^\top$,

$$A\vec{x} = x_1\vec{C}_1 + x_2\vec{C}_2 + \dots + x_n\vec{C}_n.$$

Therefore $A[a_1 \ldots a_n]^{\top} = 0$ if and only if $a_1 \vec{C}_1 + \cdots + a_n \vec{C}_n = 0$. This is precisely the asserted column relation.

Since (i)⇔(ii) and (i)⇔(iii), all three statements are equivalent.

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) Let A be a 71×8 matrix with columns $\vec{C}_1, \ldots, \vec{C}_8$. Suppose the system $A\vec{x} = 0$ has solution $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}^{\top}$. The columns of A are linearly dependent.

Solution: TRUE. Since $\vec{x} \neq 0$ solves $A\vec{x} = 0$, we have

$$1\vec{C}_1 + 2\vec{C}_2 + 3\vec{C}_3 + 4\vec{C}_4 + 5\vec{C}_5 + 6\vec{C}_6 + 7\vec{C}_7 + 8\vec{C}_8 = 0,$$

a nontrivial linear relation among the columns. Hence the columns are linearly dependent.

(b) The list $\begin{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ -3 \end{bmatrix}, \begin{bmatrix} 6 \\ -2 \\ -2 \end{bmatrix} \end{pmatrix}$ of vectors in \mathbb{R}^3 is linearly independent.

Solution: FALSE. In fact,

$$\begin{bmatrix} 6 \\ -2 \\ -2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ -2 \\ -3 \end{bmatrix},$$

so

$$-2\begin{bmatrix}1\\1\\2\end{bmatrix} - 2\begin{bmatrix}2\\-2\\-3\end{bmatrix} + \begin{bmatrix}6\\-2\\-2\end{bmatrix} = \begin{bmatrix}0\\0\\0\end{bmatrix}$$

is a nontrivial linear relation. Therefore the three vectors are linearly dependent.